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Cyclic and high polymeric phoephazenes can be
modified by nucleophilic-cype substitution reactions
to generate a wide range of derivatives. Recent
developments include the introduction of bioactive
organic residues to yield biologically-active high
polymers and the synthesis of transition metal
derivatives of phosphazones. In addition, hybrid
phosphazene-carborane compounds have been prepared
including examples in which nido-carboranyl units,
attached to a 9osphaza" ring or chain, function
as binding sites for transition metal organometallic
units.

.4st inorganic research involves work with small molecules.
end relatively little concentrated effort has been devoted to the
macroolecular aspects of the subject. The complexity of the
macromolecular chemistry has undoubtedly contributed to this
neglect. Rowever,.it is clear from recent work that dramatic
advances in both fundamntal science and technology would be
possible if the high polymer chemistry of the representative
elements were to be studied in detail. Indeed, the much-
heralded renaissance in Main Group chemistry may ultimately depend
on a closer investigation of the macromolecular aspects of rhe
field.

Mfy purpose here is to illustrate what can be accomplished
with just one inorganic mecrouolecular system - in this case
constructed from a backbone of phosphorus and nitrogen stow . A
Almost certainly, other system based on the .ain Group elements
can be developed to an equal or greater degree. I hope that the
following comments will stimulate an increased interest in that
directon. I will also attempt to illustrate the relationship
between the fundamental chemistry on the one hand. and an approach ession For
to solving practical problem on the other. S AI
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Guiding Principles

Yearly all synthetic polymers are synthasized by the polymer-
ization or copolymerization of different "mnomers." The chain
growth process say involve the addition chain reactions of
unsaturated small molecules, condensation reactions, or ring-
opening chain-coupling processes. In conventional polymer
chemistry, the synthesis of a new polymer requires the use of a
new monomer. This approach is often unsatisfactory for inorganic
systems, where relatively few monomers or cyclic oligomers can be
induced to polymerize, at least under conditions that have been
studied to date. The main exception to this rule is the
condensation-type growth that occurs with inorganic di-hydroxy
acids.

Because the opportunities for controlled chain growth are
mre restricted in inorganic than in organic systems, an alter-
native approach to polymer synthesis becomes appealing. This

involves the use of substitution processes carried out on a
preformed reactive polymeric intermediate. In this way molecular
diversity can be introduced by different substitution reactions
rather than by s diversification of the polymerization process.

If this principle can be applied, two pocential problems must
be avoided: the substitution reactions must lead to neither chain
cleavage nor crosslinking.

Simple Substitution Reactions with Polv(dihalophosphazenes)

Poly(dichlorophosphazene) (II) is a highly reactive inorganic

macromolecule. It can be prepared by the carefully controlled
thermal polymrization of the cyclic crimer, hexachlorocyclocri-
phosphazene (I), itself synthesized from phosphorus pentachloride
and amnium chloride. In solution, the chlorine atoms in I1 can
be replaced readily by reaction with a wide variety of organic
nucleophiles (1,2,3) (Scheme 1). The resultant polymers (111-v)
are stable and display a range of physical and chemical properties
determined by the nature of the organic side groups. This
synthesis process has been reviewed in detail elsewhere (4-7).
Here it is sufficient to note that several hundred poly(organo-
phosphazenes) have been prepared by this method. Polymers of

this type are already being used in technology; they are also of
considerable scientific interest. Similar syntheses have been
developed based oan poly(difluorophosphazens), (PF 2)5 (8).
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Scheme 1

Cyclic Trimers and Tecramrs as Reaction Models

From a theoretical and mechanistic point of viev, small
molecule rings are msch easier to study than long macronolecular
chains. Substitution reactions carried out on macromolecular
substrates may involve side reactions that load to chain cleavage
or crosslinking. Mechanistic studies vith mcromolecules are
difficult to carry out because of solution viscosity effects,
distributions in chain length, and the problem of character-
ization. Rence, it is prudent to eplore potential new reactions
first with the use of small molecule models such as I, V., and V11
and then to eteud these reactions to the high polymers.
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Some of the polymeric reactions mentioned below are still under

study at the model compound level.

Modern Objectives Ln Polymer Synthesis

Polymers have been valued since antiquity for their solid
state properties. By this is meant cheir ability to undergo
chain entanglement or co-linear orientation aid microcrystalli-
zation in the solid state. This underlies their use as
structural mterials, films, fibers, and alastomers. Such
properties still constitute the driving force for most polymer-
oriented research, especially with respect to :he synthesis of
heat-stable, radiation-stable, or highly flexible materials.
The electrical properties of solid polymers have always been of
interest.

However. in recent years another approach to polymer
chemistry has received increased emphasis. In this, macro-
molecules are studied in terms of their behavior as sinale
molecules rather than as molecular conglomerates. In solution,
polymer molecules behave differently from smell molecules
because the long chain length permits extensive coiling, reduced
translational mobility, and an inability to pass through semi-
permeable membranes. Lightly crosslinked polymers behave like
linear polymers in solution except that the swollen matrix has a
physical immobility and an open matrix character unlike any other
system. For these reasons, polymers are of great interest as
"carrier molecules" for chemotherapeutic drugs or transition
metal catalysts.

Finally, single macromolecules, because of their one-
dimensional character, offer the promise of sequential side group
coding, information storage, and template function in the manner
that is well known in biological polymers (Figure 1).

Conventional synthetic organic polymers are being studied
for all of these reasons, but the general lack of chemical
reactivity in these systems is a serious drawback. It is for
this reason that polyphosphaene, with their substitutive
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method of synthesis, are of considerable interest. In the
following sections, I will illustrate vhy the polyphosphazene
system is an appealing starting point for now developments in two
specific areas - in chemotherapy and polymer-bound catalyst york.

Bioactive Polyphosphazenes

Specific inorganic macromolecules are unusual because they
can be hydrolyzed to relatively innocuous products or to small
molecules that can be metabolized. Most conventional organic
polymers do not have this attribute. Thus. these inorganic
systems are of special interest as carrier molecules in chemo-
therapy.

Recent work in our laboratory has shown that certain side
groups attached to a polyphosphazene chain impart a sensitivity
to hydrolytic chain cleavage; ocher side groups generate water-
solubility. Both of these characteristics are important in
chemotherapy. Polyphosphazenes are also valuable in biology
because two or more substituted groups can be readily attached
to the same chain. Thus. individual side groups that possess
chemotherapeutic, vater-solubilization, hydrolytic-destabilization,
or 'homing" characteristics can be combined in one molecule to
form a drug vith a set of synergistic properties.

Polymers containing the repeating units shown in VIII-XI
have been shown to be hydrolytically degradable and/or water-
soluble (9-13). Amino acid ester derivatives (VIII) degrade to
ethanol, amino acid, phosphate, and amonia, vhich can either be
metabolized or excreted. Thus, such side units used together
vith chemotherapeutic cosubstituent groups, provide a facile drug
delivery system. Imidazolyl side groups (IX) also confer
hydrolytic sensitivity, but the biochemical response to the
hydrolysis products has not vet been established. aethylamino
side groups X) provide vater-solubility, as do glucose residues
(XI).
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These polymers ere synthesized by the general methods shown in
Scheme 1. Their hydrolysis behavior has been the subject of
sveral fundamental mechanistic studies at the model compound
Ivel (10,11).

The attachment of biologically-active side groups has also
been explored. At the present time several different approaches
have been developed vhich lead to the synthesis of polymers such
as XII-XMI.
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Steroid-bound polyphosphazenes (XII) can be prepared by the
reaction of II vith metal steroidoxide salts folloved by treatment
with amino acid esters (14.15). The sulfadiazine-bound polymer
(.aII) was synthesized by Schiff's base coupling of a polvphos-
phazene bearing a pendent aldshydic group with the antiobiocic
asine (16). The local anesthetic, procaine, was linked to the
polymer backbone by direct aminolysis of TI to yield polymers
based on the repeating unit XIV (17). Peptide-coupling
techniques have been used for the linkage of polyphosphazenes
bearing pendent amino residues to bioactive carboxylic acids (XV)
(I.). Catecholamines, such as dopamine or epinephrine, have been
Linked to ar.loxyphosphazene high polymers by diazo coupling
methods (XV) (19), and these polymers retain the biological
activity of the free hormone. The mcopolysaccharide, heparin,
can be bound to aryloxyphosphasene polymers via ionic exchange



with quaternized ammonium pendent groups CXVII) (20). These
polymers show promise as non-thrombogenic materials for bio-
engineering.

It will be clear that, combined with the use of hydro-
lyticaly-sensitizing or water-solubilizing cosubstituent groups,
these polymsrs could have an important impact on chemother -v and
other areas of biomedicine. At present, the problem is
establish the feasibility of a wide range of synthetic me- is
and to evaluate the biological activity of each class of aers.

Linkage of Transition Metals to Phosphazene Pings and Hi
Polvymrs

This book comprises a survey of recent advances in
chemistry of the representative (Main Group) elements.
the long-range resurgence of Main Group chemistry as an exi-nding
research area depends to some extent on the strength of its inter-
face with organic chemistry, transition metal chemistry, and
applied science. Some organic-related aspects of phosphazene
chemistry were discussed in the previous section. Here the
interface with transition metal chemistry is reviewed.

Polyphosphazenes and cyclophosphazenes are almost unique as
carrier molecules for transition metals because of the wide range
of binding sites that can be incorporated into the phosphazene
structure. The substitutive mode of synthesis described earlier
allows a structural diversity that is not found, for example, in
polystyrene, polyphenylene oxide, or other organic carrier
polymers.

he emphasis in the following sections will be on exploratory
model reactions carried out with phosphazene cyclic trimers or
tetramers, although the analogous macromolecules systems have also
been studied in several cases. First, I will summarize the
various types of metal binding sites that are accessible at the
present time. Synthetic procedures leading to the incorporation
of several of those sites and their role in metal binding will
then be discussed.

Options for Metal-Binding Sites. Seven approaches for
metal-binding to cyclic or polymeric phosphazenes have been
explored in our laboratory. These are sumarized in structures
XVI!I (21). M (22-25), . (26). I (27), II (28,9), III
(30). and MXV (31.32.33).
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Only three of thtse approaches will be discussed here. The
others can be traced through the references given.

?andent Fhosphine Groups. The classical method !or the
linkage of transition metal units to high polymrs is via pendent
phosphine groups attached to a mcromolecular chain. We have
developed a synthetic strategy for the preparation of cvclophos-
phazene model compounds and the corresponding linear high polymers
thich bear pendent triarylphoaphine groups. This approach is
illustrated in Scheme 2 (22-25).
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Species such as XXV, .XVI. or XXVII readily form coordination
complexes when treated with AuCI, R'Os (CO) 1 0 . .(CO) 3 (n-C 5 H5 ),
Fe(CO) 3 (PhC-CNC(O)CR3). or (hCi(CO)I? 2 (U). Two results are
of special interest. First, the skeletal nitrogen atoms in XVV-
XX"II do not participate in the coordination process. Presumably,
they are effectively shielded by the aryloxy units and are of low
basicity. Second. :-dinative crosslinking can occur when two
phosphine residues '.nd :o one metal atom. LiSand-exchange
reactions were detected for the rhodium-bound species. The
tri-osmiua cluster adducts of .WV, XXVI, and XMVII are catalysts
for the isoeerization of 1-hexane to 2-hexane.

Carboranyl Phosphazenes. Cyclic trimeric and high
polymeric chlorophosphazenes react with lithlocarboranes to form
carboranyl phosphazenes, as shown in XXVII and WXXX (28).

P

X Ii

(0 - IN)

R - .- or Ph, and X Cl or OCHCF 3  (4 C)

The halogen atoms remsininS can then be replaced by organic
residues such as trifluoroethoxy umits. High polymers can also
be prepared by ring-opening polymerization of the chlorocyclo-
phosphazene, XXVII. Compounds of this type can be converted to
aido-carboranes in the presence of base, but theme do not form
metallo-derivatives, presumably for steric reasons (29).-

However, separation of the carborane cage from M1 e phos-
phazene ring or chain by a methylene spacer group allows atals
to be inserted into the open face of the carborane. These
syntheses were accomplished by thd reaction routes shown in
Schemes 3 and 4. igh polymeric analogues of these trans-
formations have also been accomplished following polymerization
of Ma. The rhodium-bound cyclophosphazenes and polyphosphazenes
are catalysts for the hydrogenation of 1-hexene. In this, they
show a similar behavior to metallocarboranes linked to polystyrene
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(34). The oxidative-stability of the phosphazene backbone is
expected to be an advantage in catalytic reactions.

• etallohophazenes with Phosphorus-.Metal Bonds. Until
recently, the chemistry of cyclic and high polymeric phosphazenes
was essentially the chemistry of their organic derivatives (Scheme
1). However, a discovery reported in 1979 (31) opened up a new
field of metallophoephazene chemistry in which transition metals
form the nucleus of the side group structure and are linked to
the skeleton through phosphorus-metal bonds. These species are
of theoretical and potentially practical importance, and I Vill
summarize briefly some of the main features known at this time.

Organometallic anions react with halophosphazenes to replace
halogen atoms by organometallic units. The first reactions of
this type discovered are illustrated in Scheme 5. The metallo-
phosphazenes are surprisingly stable. Moreover, as shown below,
hexachlorocyclotriphosphazene reacts with an organometallic di-
anicn to yield both a dimetallo derivative (=CI) and a tri-
metallic cluster derivative (MXMII). The latter compound is

Ci N cl

I re 2(C)SI I 2I

(OC)Fe.Fe(O)4 Fe(OoF .\\ 3
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stabilized by both P-metal and N-metal coordinative bonds. Other
me|allophosphazones containing Pt and Au have been reported
recently by Schaidpeter and coworkers (35). X-ray structure
data have been obtained for several of these compounds and, as
might be expected, a strong interaction between the metallic
units and the phoephazene ring system is evident (31,32,.33,36).

Conclusions

The reactions discussed in this chapter are illustrative of
the chemical diversity that follows from the substitutive
approach to polymer synthesis. Rings and polymers based on the
Main Group inorganic elements are especially appropriate for this
approach because of the generally high reactivity of, for
example, the element-halogen bonds. Thus, a key problem facing
the inorganic research community is to devise and develop
methods for the synthesis of high polymers, comparable to poly-
(halophosphazenes), that contain elements such as silicon,
aluminum, boron, or sulfur in the skeleton, with reactive side
groups attached to these atoms. Once these polymers have been
synthesised, a diverse arsenal of side group substitution
processes can then be mobilized to prepare a broad range of
different mcromolecules. If this can be accomplished, it
should have an almost unprecedented impact on inorganic
chemistry, polymer chemistry, and high technology.
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Figure 1. Traditional and exploratory uses for high polymers. (a) Polymers

have been used traditionally for their solid state, chain entanglemenc

behavior vhich gives rise to strength or elasticity. (b) Polymers used as

carrier molecules for bioactive agents are under investigation in controlled-

release drug therapy either as targeted macroolecular drugs or as immobilized,

biodegradable system. (c) Transition metal catalysts linked to polymers

can be immobilized for ease of manipulation or recovery, or the polymer may

modify the catalytic activity. (d) Electrical conduction in polymers may

occur along =saturiced chain sequences or betveen chains in crystalline

domains. (e) Sequential arrangement of side groups along a linear polymer

chain offers the prospect of control of polymer conformation, or the use of

such polymers as templates for the controlled construction of complementary

polymer molecules. Such polymers amy also prove useful in the future for

infor mtion storage at the molecular level.
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